Please enable JavaScript to view this site.

Knowledge Base

Analytically calculates the dipole emission properties for a multilayer stack. For unpatterned planar stacks, this is often much more efficient than running fully vectorial simulations with FDTD Solutions.

 

This function returns the luminance (cd/m^2) and radiance (W/steradian/m^2) as a function of emission angle, as well as the corresponding X, Y, Z tristimulus values, assuming current density of 1A/m^2. The CIE 1931 color functions [1] are used for calculating X, Y, Z.  

 

References:

[1] CIE Proceedings (1932), 1931. Cambridge: Cambridge University Press.

 

Related topics:

To calculate the Purcell factor and far-field emission power density for a multilayer stack, see stackpurcell.

For simulating the plane wave transmission of a multi-layer stack, see stackrt, stackfield

For mode analysis of an OLED layer structure, see OLED slab mode analysis.
For simulating the dipole emission for arbitrary geometries using the finite-difference time-domain method, see OLED application examples.

 

Note: Thickness of first and last layer

It is necessary to specify the thickness of each layer, including the first and last layers. Often, a thickness of zero can be used for these layers.

 

Supported Product: FDTD, MODE, DEVICE, INTERCONNECT

Please contact sales@lumerical.com if you would like to have access to this script command.

 

Syntax

Description

dipole_emission = stackdipole(n,d,f,z,dipole_spec,orientation,res,direction, ef,st,rd);

Analytically calculates the dipole emission properties of a multi-layer stack

 

Parameter

 

Default value

Type

Description

n

required

 

vector

Refractive index of each layer.

Size is either Nlayers, or Nlayers x length(f) if dispersive materials are involved.

d

required

 

vector

Thickness of each layer.

Size is Nlayers.

f

required

 

vector

Frequency vector.

z

required

 

vector

Position of the dipoles (0 is the bottom of the stack).

Size is Ndipoles.

dipole_spec

required

 

vector

Dipole spectrum. This is treated as a power intensity distribution, integrated by midpoint rule in wavelength. The photon probability distribution is calculated by normalizing dipole_spec/f.

Size is Ndipoles x length(f).

orientation

optional

0

vector

Orientation of the dipoles. The options are

Unpolarized: 0

Vertical p-polarized : 1

Horizontal s-polarized: 2

horizontal p-polarized : 3

Size is Ndipoles.

res

optional

1000

number

The resolution for far field emission angle.

direction

optional

1

number

Choice of far field half space, this can be +1 (top) or -1 (bottom).

ef

optional

1

vector

The exciton fraction. The default value is 1, which means that every carrier results in an exciton.

Size is Ndipoles.

st

optional

0.25

vector

The singlet exciton fraction. The default value is 0.25, which means that there are 3 spin triplets per spin singlet.

Size is Ndipoles.

rd

optional

1

vector

The relative decay rate. The default value is 1, which means that every singlet exciton results in a photon and there is no contribution from non-radiative decay processes.

Size is Ndipoles.

 

Example

Use stackdipole to calculate the radiated power of a dipole source in a dielectric half space.

 

# geometry: halfspace of material n1 and n2

n1 = 1.5; # lower halfspace

n2 = 1.0; # upper halfspace

 

# source: monochrome 500nm dipole

# position: in material n2 delta nm from interface

wavelength = 500e-9;

delta = 80e-9;

 

# angular_res: resolution for emission angle (farfield angle)

angular_res = 173;

 

n = [n1; n2];

d = [0, 2*delta];

f = [c/wavelength];

z = [delta];

spectrum = [1.0];

 

result_unpol = stackdipole(n,d,f,z,spectrum,[0],angular_res);

result_pVert = stackdipole(n,d,f,z,spectrum,[1],angular_res);

result_pHorz = stackdipole(n,d,f,z,spectrum,[3],angular_res);

result_sHorz = stackdipole(n,d,f,z,spectrum,[2],angular_res);

 

plot(result_unpol.theta,result_unpol.radiance,"emission angle (degrees)","power/steradian  (W/steradian/m^2)","unpolarized");

plot(result_pVert.theta,result_pVert.radiance,"emission angle (degrees)","power/steradian  (W/steradian/m^2)","vertical P orientation");

plot(result_pHorz.theta,result_pHorz.radiance,"emission angle (degrees)","power/steradian  (W/steradian/m^2)","horizontal P orientation");

plot(result_sHorz.theta,result_sHorz.radiance,"emission angle (degrees)","power/steradian  (W/steradian/m^2)","horizontal S orientation");

 

# calculate power

sin_theta = sin(pi/180*result_unpol.theta);

#integrate power theta 0->pi/2 and phi 0->2pi

total_power_pVert_upward = (0.5*pi)*(2*pi)*integrate(sin_theta*result_pVert.radiance,1,linspace(0,1,angular_res));

 

See Also

Functions, Stack optical solver, stackrt, stackfield, stackpurcell

Copyright Lumerical Inc. | Privacy | Site Map