Please enable JavaScript to view this site.

Knowledge Base

Evaluates the normal (Gaussian) probability density function (PDF) for real-valued argument x

 

$$ f(x)=\frac{1}{\sqrt{2\pi \sigma^{2}}}e^{-\frac{(x-\mu)^{2}}{2\sigma^{2}}} $$

 

where µ is the mean and σ is the standard deviation. By default, μ=0 and σ=1.

 

 

Note: The normal PDF is symmetric with skewness γ1=0 and kurtosis β2=3.

 

 

Supported Product: FDTD, MODE, DEVICE, INTERCONNECT

 

Syntax

Description

f = normpdf(x)

Returns the normal (Gaussian) probability density function (PDF) for real-valued argument x. By default, μ=0 and σ=1

f = normpdf(x,mu,sigma)

Returns the normal (Gaussian) probability density function (PDF) for real-valued argument x. µ is the mean and σ is the standard deviation.

 

See Also

Functions, pearson4pdf

Copyright Lumerical Inc. | Privacy | Site Map